
Naval Re search Laboratbry,
Washigton, Lao2atr5-5000

AD-A241 288 NRLReport 9309

Pulse Compression Degradation Due to. Open Loop
Adaptive Cancellation, Part II

-KARL GERLACH

Target Chdracteristics Branch
-Radar DiviSion

August 23, 1991,

DTIQ

91-12259

. R dprved- public res 0 tribution unlimited.



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 00R-18R

Pubh report ncg burdn f e mt, olln of'rnfc-mawin , est~mated to aveiag~e , n~ur oc, lesporse, including the time to
r 

reviewing instructions, searching existing data sources,
herin and manann he dat ne-d led ind,,.0-ple1,,n in@ buve,c nq thv, ic,.iin o! information send k.orment$' reading this burden estimate or any other aspet of this

N lo of R0 ato. m .dng suggestwrn' en tL abaorhatton Nicadqurter$ Servie% rdrectorate information Op rations and Re on, i295309ferson
Oa-,s)1ighway Sute 1204 Arlngton. VA 22202,4302. ard to the Offke )t Management and Budget. P8ll'work ReduCgon Pto ect (o04,0 BB). Washincgton, OC 20503.

1. AGENCY USE ONLY (LeaveGlnCk)Y 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

August23, 1991 Interim
4. TITLE AND SUBTITLE S . FUNDING NUMBERS

Pulse Compression Degradation Due to Open om e puls t N
Loop Adaptive Cancellation, Part Ih PR - RAI W51,2559

6. AUTHOR(S)

Karl Gerlach

7. PERFORMING ORGANIZATION NATE(S) AND ADDRESSrES) 8. PERFORMING ORGANIZATIONo
REPORT NUMBER

Naval Research Laboratory 9Washington, DC 20375-5000 NRL _Report_9309

91SPONSRING MONITORING AGEACY NAME(SS)AND ADDRESS(ES) 10. SPONSORINGM MONITORING
OF RPORAGENCY REPORT NUMBER

S Office of Naval Technology
Arlington, VA 22217

11. SU-PPLEMENTARY NOTES"--

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTIN CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

An exact expression for the pertuibed sidelobe leel of a compressed pulse that has been prepro-
cessed through an adaptive canceller has been deried in Part 1. This exact expression requires conm-
puter assistance to be evaluated. This report derives a "rule of thumb" expression that is a good
approximation to the exact expression. Furthermore, this same approximation can be used to derive a
good approximation for the canceller noise power le,,el that is induced by, having a desired signal
present in the canceller weight calculation. An expression for the number of independent samnples
necessary to equalize the signal-induced power with the quiescent interference level is derived.

14. SUBJECT TERMS IS. NUMBER OF PAGES
Gram-Schmidt Radar 19
Adaptive Filter ECCM 16. PRCE CODE
Adaptive Cancellation

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540.01-28o0s5oo0 Standard Form 298 (Rev 2.89)



CONTENTS

1. INTRODUCTION .......................................................................................... 1

2. BACKGROUND ............................................................................................. 1

3. BOUND DERIVATION .................................................................................... 6

4 . R E SU LT S ..................................................................................................... 8

5. SUMMARY ................................................................................................... 12

REFERENCES ..................................................................................................... 12

APPENDIX - Proof of Eqs. (21) and (22) ................................................................. 15

-- i I I I

4

Aco-egulison iror
ITIS GRA&I
DTIC TAB Q
Unannounced 0
Justification

Distrjibnt ion
Availability Codes

Avail and/or
Dist Special

i



PULSE COMPRESSION DEGRADATION DUE TO OPEN LOOP
ADAPTIVE CANCELLATION, PART II

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse -that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The pertinent assumptions of that
analysis are:

1. the adaptive canceller was implemented by using the Sampled Matrix Inversion (SMI) algo-
rithm [2] or its equivalent, the Gram-Schmidt canceller [3],

2. the input noises were temporally independent and Gaussian,

3. the desired signal's input vector (or code) was completely contained within the samples that
were used to calculate the adaptive -weights and is only present in the main channel, and

4. the adaptive weights were computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe levels are degraded by preprocessing the main channel input data stream (the uncompressed
pulse) through the adaptive canceller. It -was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adapti,e canceller under assumption three.

The exact expression [1] for pulse compression degradation requires computer assistance to
evaluate this expression. This report derives a "rule of thumb" expression that is a good approxima-
tion to the exact expression.

2. BACKGROUND

Figure 1 is a functional block diagram of an adaptive canceller followed by a pulse compressor.
The adaptive canceller linearly %eights the auxiliary channels with weights that are calculated from a
batch of sampled input data. The main channel consists of a desired signal plus noise that may or
may not be correlated with the auxiliary channels. It %as shown in Ref. I that when analyzing the
pulse compression degradation it is necessary only to consider the interattion of the main channel's
desired signal with the random variables in the auxiliary channels (Fig. I). Thus for analysis pur-

poses, the adaptive weights of x,,, n = 1, 2, ... , N - I are only a function of the desired signal s
and the samples of x,. Furthermore, as the number of independent samples goes to infinity, the auxi-
liary adaptive weights go to zero [1].

Manuscript approved April 4. 1991.
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MAIN AUXILIARIES
CHANNEL: x 2  X NI
DESIRED
SIGNAL
ONLY

PERTURBED DESIREDs' SIGNAL

MATCHED
FILTER:s

1OUTPUT

Fig. I - GS canceller followed by
a matched filter

In Fig. 1, s represents the desired signal vector (or code) of length L, and
x/,7 n = 1, 2, ... , V - I represents the nth auxiliary random data vector of-length K. The canceller
shown is the Gram-S-hmidt (GS), which is numerically equivalent to the SMI algorithm [3]. We
denote it by GSKhj where K is the number of samples per channel used to calculate the canceller
weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filler for a given radar waveform. Most of the
energy in the recei,,ed radar ,a-veform is compressed into a given single range cell and, thus, the sig-
nal leel can be increased significantly for detection purposes. However, some energy does leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
g-en range cell. If a target or piece of clutter-is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus it is
highly desirable to maintain-a low sidelobe response.

Let r equal the 2L - I output vector of the pulse compressor. If an adaptive canceller is not
being used, then it is straightforward to show that

r =S's ()'

2
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where

s = (Sl. s2, ... , SL)T ,

sL 0 0 0

SL-I sL 0 ... 0

SL-2 SL-I SL " 0

ST S 2 : L(2)
s S2 S3 ... SL.()
0 S l  S 2 ""St,- I

0 0 S !" SL -2

0 0 0 ... s j
and Tt denotes transpose and complex conjugate transpose, respective!y. S is a L x (2L - 1)
matrix called the autocorrelation function (ACF) matrix of s. If L < K, we define an augmented--sig
nal vector s,,,,g of -length K such that the first L elements are elements-of s and the remaining elements
are zero. S,,g is defined as the augmented (2K - 1) x (2K - 1) ACF matrix of s using the ele-
ments of sa.g. The quantity rag is defined as the augmented 2K - I oatput vectr of the pulse
compressor. Thus

rang =S augSaug- (3)

Let s' be the resultant output vector after s has ben processed through the GS canceller and s,;,, be
the resultant augmented GS output -vector. This resultant output vector is then inputted to the matched
filter of the vector s, or equivalently, sa...g If we set r' equal to the respense of s,,,g match filtered
with Sang then

r. = S11gsalg. (4)

In Ref. I it was shown under assumptions I through 4 (given in Section 1) that the average
pulse compressed sidelobe level after adaptive cancellation is given by

A. K(K + 1)A11(K,N) SL K(K + I)-
a(I) =(K - N + 1)(K - N + 2) S +(K - N + 1)(K - N + 2) A i2(K,g)lls,(I)II2, (5)

3
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where

SLa(I) is the average pulse compreosed sidelobe level after adaptive cancellation -of the Ith range
sidelobe (sidelobes are numbered :h1, I = 1, 2, ... , these can be related directly to the
elements of r'; for example, -1 = =- I are the sidelobes adjacent to the match- point).

SLI) is the -quiescent pulbe compressed sidelobe level of the lth sidelobe (K = Co or equivalently
no adaptive cancellation before pulse compression, these can be related directly to -the ele-
ments of r)

K is the number of independent samples per channel used to calculate the adaptive canceller
weights

N is the number of channel (ma:n and auxiliaries)

s(I) is the K-Ith column- of the augment AFC -matrix Sa,,, 1 * K, and

Is,(/)Il: = s (I) sE()

Note thit SLatI) and SLq(I)yare normalized to the mainlobe pulse compression gain (adapted or quies-
cent. respectively) which is set equal to one or 0 dB.

The scalars A II(K,N) and A 12(K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 2. Define

u0,v0 are arbitrary K-length main channel input vectors,

uv,v., are K-length-main channel output vector, and

,= x,,(l), x,,(2), ... , x,, (K)) r , I = 1, 2, ... , N - 1, K-length random data vector

of the nth auxiliary channel.

The elements of xn, n = I, 2. ..., N - I, are assumed to have the following characteristics:

I. x,,(k), n = 1 ... , N - 1, k =1 .... K are identically distribtted circular Gaussian com-
plex random variables (r.v.)

2. Fx,,(k)l = 0, El Ix,,(k, i2J = I, where E['H denotes expectation and I I denotes magni-
tude

3. EJx,,(k,)xrI*k 2)l = 0 unless n = n. and k1  k., where * denotes complex conjugate.

4
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U0 Xl X2  XN-.1 V0 X1 X2  XN-.1

7GSKN 

VGSKN

UN-1 v N-1

Figz. 2 - Parallel iV-input GS canccllers

Define

a,2 +1,1 6
a~~1 K-n (K -n)(K -n + 1' .. ,- 6

b.1 (7)
(K - n)(K - n + 1)

It is shown in Ref. 1 that

El Iu'..jvA-... I')~ 1 [u(K, N) A12(K. A')1 I U~OIO2

[ElIjuvi fl2j_1jj) IL (KN) A,,(KN)J [11u0II11v0II21(8

where [A I I(K,N) A 12(K,N)1 N-2 [ail b,,
[A2 1(KN)A,,(K,.N)J = I11 [b1, a,1] (9)

Equatiunb t8) and (9) resulted from soh in, the following coupled recursi-,c rclatiomhips that %ecre
derived in Ref. 1:

E~u~+1,,1 
2 ~= ~ti4V~2J[i-K -n+(K - n)(K -n + 1)1

+ EliI "11211V,3fl21 [( )](10)

5
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+ 1112 11l-lV,++1l112 El J u ,, 1 211

E1 I U~,V~ (K -n)(K - n + 1)

+ E1%, 2 11V [ K 1 1
K - n (K - n)(K - n1 + 1)

wheren = 0, 1, ... , N - 1.

3. BOUND DERIVATION

The expression derived -for SL,, given by Eq. (5), although exact, does not readily indicate how
the adaptivc sidelobe level varies with N and K. In this section we derive a tight upper bound on SL,,
that is in terms of explicit expressions of K and-N.

This bound is obtained by considering Eqs. (10) and (11). Instead of deriving a recursive rela-
tionship for El0 u, ,z112) in this equation, we upper-bound this expectation by using the inequality
[4]

Elplu112lv,,ll2l _< -,/-ETllu,,llr1 flllv,,li41. (2

This inequalit) is merely another form of the Cauchy-Schwartz inequality. It allows us to upper-
bound the joint moment in terms of moments of individual random variables.

It was shown in Ref. 3 that

EIIlu,,l 41 = iuolI4 (K - n)(K - n + 1) (13)
K(K + 1)

and

_rll,,l41 Ilvo114 (K - n)(K - n + 1) (14)

K(K + 1)

Substituting these expressions into Eq. (12) results in

,, , (K-n)(K-n + i)(15)
K(K + 1)

Substituting Eq. (15) into Eq. (10) results in

ElI u'l - 1  21 1 :S r; 21 1 2,+ I
, Ki -n (K - n)(K - n +)

K(KiVolr- M I + !) (16)

6
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It is apparent from Eq. (16) that El I uv, 12), i = 0, 1, ... , N - I can be upper-bounded by
c,, where c,, is found by the recursive relationship

F1 + 2 + +_ IIUO1121VO112 (17)

K- t (K - n)(K -n + 1) ton + K(K + 1)

Initial condition (IC) too u'0Vo 2

We can show that &N),-, has the form

= K - + (K - n)(K - n + 1)

+ c 11,I1211voII2, (18)

where c is a constant to be determined. In fact, c does not-depend on the initial condition, a fact that
we-use to find c. For uo = vo, it follows from Eq. (13) that

toN- I lluI-,ll F I 2(N - 1) (N -I)N

ON.. = 'UN-in1 = - K +-( + luoll .  (19)

Substituting Eq. (19) into Eq. (18) and solving for c,

2(N-1) (N-.I)N v-2 + IC' + 1 I + .(20)
K K(K+ 1) -- L K-n (K-n)(K-n + I)J

It is shown in the Appendix that

X-2 N 1_ _- 1 2
-"I ! - + 1< l (21)

,,=0 K-n (K-n)(K-n + i) K

and

(K-N + 2)(N - 1) (22)
K(K - 1)(K + I)

Thus inserting these inequalities into Eq. (19) results in

U~v~V, ~t 2 < F1  K- 2 Iu'v°1 + (K - N + I) IIiolivo]. (23)

'' L KJK(K - 1)(K + 1) (3

To find a bound on the adaptive compressed sidelobe level as %,as done in Ref. i. we set
1o = S0 aid vo = s, where s,... is the augmented K-length signal vector and s, is a column of the

7
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augmented signal matrix. Wc note that 115112 = 1 and that SLq = ISIS12. It was shown in Ref 1
that the expected value of the-match point of the compressed pulse prcproces!sed by a GSK.N canceller
is

ElIItS 121 = (K - N + 1)(K - N + 2) (4
K(K + 1) (4

Thus if we divide both sides of Eq. (23) by the expected value of the match point we find

F N- 111)12 N-
S(I) < -K(K -N+ 2) )+ (K- N+l1)(K-l1) (25)

We set

Q(KN= N N- I
Q K ) I K(K - N + 2)' (26)

and4

-AS4,(K.N) = K N l( -)(27)

Thus

SZLa(l) < Q(K1N)SLq(1) + ASL,(KN)ISc(l)I 2. (28)

Similarly, define the quiescent sidelobe level factor

Q(K..N) K(K + l)A11(KN) (9Q(K,) =(K- N+ 1)(K - N+2) (9

and the adaptive side perturbation

ASL,(K, _ K(K +_l),11&KN) (0
~1S~,K.N -(K - N + 1)(K - N + 2) (0

so that Eq. (5) can be rewritten as

S41(I) = Q(K.N)SLq(l) + ASL,,(KN) 1ls,(1)[12. (31)

4. RESULTS

We no%% demonstrate in graphical formi that Q(K.XV) and ASL,,(K.N) arc close approxinmation% of
thc (quiCSLent sidelobe lecIc factor QtK.Xj and the idapti%,c sidelobe perturbation ASL,,(KN.), re-spec-
tively. Define the followinty ratios

o=Q (K. M) (32)
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and

SL4,(KN)r., = SI.(,N)"(33)

We set Na,, = N - I and K = MN where M is a positive integer and calculate rQ? and r-% vs
N,, and M. We restrict il >_ 2. Many cases were run (AM _. 10. N _< 100), and the two ratios
were alays less than one and lower-bounded b, the case %hen M = 2. Thus, we onl% present the
curves for Al = 2. The close approximation is verified b) the plots-of rq and r. shom-n in Figs. 3
and 4, respectively. The worst-case approximation of Q(K.N) by Q(K.N) occurs ulien N ,,, !.
M = 2. In this case r2 (dB) = - 1.76 dB.

0.0 Mu2

-1.0

0rO (dB)= 1.76 dB FOR Nu.,= u
-2.0

-3.0

-4.0

-5.0 .I . . ..
0.0 10 20 30 40 50 60 70 80 00 ;o

NtJ. NO. OF AUXILIRIES

Fig. 3 rvs V X. 1 1 2

An even better approximation of Q(K.N) was found by using the expression

ASL,(K.N) N-i (34)(K- N+ )K"t4

Note that the difference between the expression for .S!, gin by rlS. (34) and 127 is that tie
K - I is replaced by K. Define the ratio

-.SI.,(1)

Figure 5 plots this ratio for l - 2 vs N,=. Note that the uorst-case approximation occurs when
,, = 2. Al = 2. In this case. r {dB) = -. 5l dB.

9



KARL GERLACH

0.0

-1.0

2.0

- 3.0

-4.0

0.0 10 20 30 40 50 60 70 80 90 100 110
Naux. NO. OF AUXILIARIES

Fig. 4 - rvsN M =2

0.0

-1.0

-2.0

- 3.0

-4,0

-5.0 I I
0.0 10 20 30 40 50 60 70 80 90 100 110

Naux, NO, OF AUXILIARIES

Fig. 5 - r,% (dB) vs N,,,, M =2
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Because Q(K, N) and ASL,(K,N) are close approximations to Q(K, N) and ASL(K,N) respec-
tively, it is straightforward to show that

Al 1(K,N) [ 1 N ] (36)[1 K

and

A 12(K,N) - (K - N + 2)(N - 1) 
(37)

K(K - l)(K + 1)

Again, if we replace K - 1 with K in Eq. (37), an even better approximation results:

A 12 (K,N) = (K - N + 2)(N - 1) (38)
K2(K + 1)

Inserting the approximate expressions given by Eq. (26) for Q(K,N) and Eq. (34) for
ASLa(K,N) into Eq. (31) results in

SL.~ (1 I N I SL(1) + N - 1 1S'(1)112. (39)
S L' K(K - N + 2)J I q) (K - N + I)K C

Define K3dB(/) to be the minimum number of independent samples such that SLa(1) < 2 SLJ, where
SLq = max SLq(l); (i.e., the average adaptive sidelobe level at a specific range sidelobe 1 is at most 3

1,1#0
dB above the maximum quiescent sidelobe level). It is straightforward to-show that

K 3dB(I) "  N - i + N - + (N1 2 1 s"(1)I12
+2 2 + (N 2SL, 1 - SL 1(l) (40)

when SL(1) << 1. The actual number of samples used to ensure that all adaptive sidelobes are
below 2SLq would be

K3dB = max K3dB(/). (41)1.1*0

If the maximum quiescent sidelobe level occurs close to the main lobe, then 11s, 112 1 and we find
that K3dB(/) is maximized at this maximum quiescent sidelobe level. Hence,

K~t N- 1 + N 1 (42)-2"3"I+ S' I-+ . (42)
20 2 + 2

Reference I pointed out that the pulse compression degradation analysis can be applied to quan-
tifying the canceller degradation caused by a desired signal's presence in the samples used to calculate
the adaptive weights. If the desired signal has the power o, after pulse compression, then the a,,erage

11
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power residue caused by the signal in the K - 1 range bins not containing the signal can be shown to
equal at most a.2ASLa(K,N) plus possibly the signal power due to the quiescent compressed sidelobes.
Let orini be the quiescent output noise power level of the canceller. Define

2
8(l) = / SL, (K,N) T Ilsc(1)lI2  (43)

'Jmin,

and

6 = max ((). (44)

One normally desires 6 :5 1, otherwise the desired signal generates more range sidelobe power than
the noise power residue. Because max 11S,112 - 1 and using the good approximation for ASL,(K,N)

I,1 -0
given by Eq. (34) then

N-i ~ 2N - I -€5 -.(45)
(K - N + 1)K U2in

It is desirable to know the number of independent input samples K0 such that 8 = 1. It can be
shown that

Ku - N- I + N 1 N -US (46)
2_ ormin

2 /02

We note that ao.,..., equals the output signal-to-noise power ratio (S IN),,,, of the adaptive canceller.
Thus Eq. (46) reduces to

N2N + + (N - 1) S (47)

5. SUMMARY

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The exact expression requires com-
puter assistance to evaluate this expression. In this report, a "rule of thumb" expression is derived
that is a good approximation to the exact expression. Furthermore, this same approximation can be
used to derive a good approximation for the canceller noise power level that is induced by having a
desired signal present in the canceller weight calculation. An expression for the number of indepen-
dent samples necessary to equalize the signal-induced power with the quiescent interference level is
also derived.
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Appendix

PROOF OF EQS. (21) AND-(22)

We first prove Eq. (21). Define

N-2

N- I 2 - 2+ '
n=0 K i (K -n)(K -n + 1 (K -n)(K- l)J

N-2 [K2 2( ( N-2 (
(K F')K-it+ I( n)(K - - Al

Now

N- 1) 2 (K-N + )(K-N +2)
=0 K -n (K-n)(K- n+ K(K + 1)

-1- (N -1) +N(N -1) (2K +K(K +1)'(2
Thus

b(K -N+ )(K -N +2) N-2~-
K(K +1) ,l 4  (K - n)(K - it- )J

<(K -N + 1)(K - N + 2) N-2 r1)2K(K+l1) Ji~ U K -,)J(

Now

N-2 
N+1TI~ - , 1 2J-(K+ 1)(K-NI (A4)(K = K(K - N + 2)

Thus

b(K -N+ 12 N- 1' (A5)

15
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Next we prove Eq. (22). Set

11-2 [11
a = rI 1 (A6)

,=0 (K -)(K-n - 1)

Now

b = [I + 2(N 1) + N(N- 1) (A7)
K K(K 4- ) (

and

' l [1- 1 = K(K- N)
1 ,=0 L (K- n - 1) (K- 1)(K-N+I) A8

or

1--a < I - K(K-N) = N- I (A9)

(K-- 1)(K-N + 1) (K- 1)(K-N + 1)

Using Eq. (A7) and Eq. (20), it can be shown that

c 2(N - 1) (N _ I-AO
C = 2N- K) + K: + J (1 ) a). (A10)

Using Eq. (A9) it follows that

c < F 2(N- 1) + (N- 1)N" N- I (All)
K K(K +,1) (K - 1)(K - N +i)(

or

C < (K - I1 + 2)(N - 1) (AI2)K(K - 1)(K + 1)

16


